Changes of time-attenuation curve blood flow parameters in patients with and without carotid stenosis.
نویسندگان
چکیده
BACKGROUND AND PURPOSE From the time-attenuation curves of DSA flow parameters, maximal intensity, maximal slope, and full width at half maximum of selected vascular points are defined. The study explores the reliability of defining the flow parameters by the time-attenuation curves of DSA. MATERIALS AND METHODS Seventy patients with unilateral carotid artery stenosis (group A) and 56 healthy controls (group B) were retrospectively enrolled. Fixed contrast injection protocols and DSA acquisition parameters were used with all patients. The M1, sigmoid sinus, and internal jugular vein on anteroposterior view DSA and the M2, parietal vein, and superior sagittal sinus on lateral view DSA were chosen as ROI targets for measuring flow parameters. The difference of time of maximal intensity between 2 target points was defined as the circulation time between the target points. RESULTS The maximal intensity difference of 2 selected points from the ICA to the M1, sigmoid sinus, internal jugular vein, M2, parietal vein, and superior sagittal sinus was significantly longer in group A than in group B. The maximum slope of M1, M2, and the superior sagittal sinus was significantly lower in group A than in group B. The full width at half maximum of M1 and M2 was significantly larger in group A than in group B. The maximal slope of M1 demonstrated the best diagnostic performance. CONCLUSIONS The maximal intensity difference of 2 selected points derived from DSA can be used as a definitive alternative flow parameter for intracranial circulation time measurement. Maximal slope and full width at half maximum complement the maximal intensity difference of 2 selected points in defining flow characteristics of healthy subjects and patients with carotid stenosis.
منابع مشابه
ANGIOPLASTY AND STENTING OF CAROTID ARTERY STENOSIS WITH EMBOLIC PROTECTION DEVICES
Background: Carotid artery stenting (CAS) has recently been recommended as an alternative to carotid endarterectomy (CEA) by some clinicians. Objective: This study was designed to evaluate the success rate and in-hospital and 30-day adverse events in our first experiences in Iran for CAS with protection devices, to document our results and guide further use of CAS. Methods: From December 2...
متن کاملCarotid angioplasty and stenting in a patient with high grade stenosis of Internal Carotid Artery associated with both vertebral arteries and contralateral carotid occlusion
Severe internal carotid artery (ICA) stenosis is a common cause of cerebrovascular accident (CVA) in middle-aged patients. Contralateral carotid occlusion (CCO) in patients with severe ICA stenosis is associated with high risk of CVA. Carotid endarterectomy (CEA) is associated with more complications in patients with CCO than those without CCO. In this study, we present the case of a 61-year-ol...
متن کاملNewtonian and Non-Newtonian Blood Flow Simulation after Arterial Stenosis- Steady State and Pulsatile Approaches
Arterial stenosis, for example Atherosclerosis, is one of the most serious forms of arterial disease in the formation of which hemodynamic factors play a significant role. In the present study, a 3-D rigid carotid artery with axisymmetric stenosis with 75% reduction in cross-sectional area is considered. Laminar blood flow is assumed to have both Newtonian and non-Newtonian behavior (generalize...
متن کاملPresentation of a Non-invasive Method of Estimating Arterial Stiffness by Modeling Blood Flow and Arterial Wall Based on the Determination of Elastic Module of Arterial Wall
Introduction: Arterial stiffness is an important predictor of cardiovascular risk. Several indices have been introduced to estimate the arterial stiffness based on the changes in the brachial blood pressure. Since the substitution of the blood pressure changes in the central arteries such as carotid with the blood pressure changes in the brachial results in error in the blood...
متن کاملEvaluating the effect of stenosis increase and pulsatile blood pressure on effective stress distribution in viscoelastic finite element model based on carotid artery ultrasound images
The aim of this study is to evaluate the changes of effective stress distribution in plaque by progressing to the stenosis throat and to assess the pulsatile pulse pressure effect on effective stress of a viscoelastic finite-element model of carotid arteries having less and more than 50% stenosis. In-vivo geometries of the arteries were reconstructed using consecutive transverse ultrasound imag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- AJNR. American journal of neuroradiology
دوره 36 6 شماره
صفحات -
تاریخ انتشار 2015